Non-split sums of coefficients of GL(2)-automorphic forms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Fourier Coefficients of Automorphic Forms on Gl2

Given E/F a quadratic extension of number fields and a cuspidal representation π of GL2(AE), we give a full description of the fibers of the Asai transfer of π. We then determine the extent to which the Hecke eigenvalues of all the Hecke operators indexed by integral ideals in F determine the representation π.

متن کامل

Mass Equidistribution for Automorphic Forms of Cohomological Type on Gl2

One of the central problems in the subject of quantum chaos is to understand the behaviour of high energy Laplace eigenfunctions on a Riemannian manifold M . There is an important conjecture of Rudnick and Sarnak [32] which predicts one aspect of this behaviour in the case when M is compact and negatively curved, namely that the microlocal lifts of eigenfunctions tend weakly to Liouville measur...

متن کامل

Bounds for the multiplicities of cohomological automorphic forms on GL2

We prove a power saving for the dimension of the space of cohomological automorphic forms of fixed level and growing weight on GL2 over any number field that is not totally real. Our proof involves the theory of p-adically completed cohomology developed by Calegari and Emerton and a bound for the growth of coinvariants in certain finitely generated noncommutative Iwasawa modules.

متن کامل

Automorphic Forms and Sums of Squares over Function Fields

We develop some of the theory of automorphic forms in the function field setting. As an application, we find formulas for the number of ways a polynomial over a finite field can be written as a sum of k squares, k ≥ 2. Given a finite field Fq with q odd, we want to determine how many ways a polynomial in Fq[T ] can be written as a sum of k squares. For k ≥ 3 (or k = 2, −1 not a square in Fq), t...

متن کامل

FOURIER COEFFICIENTS OF GLpNq AUTOMORPHIC FORMS IN ARITHMETIC PROGRESSIONS

Abstract. We show that the multiple divisor functions of integers in invertible residue classes modulo a prime number, as well as the Fourier coefficients of GLpNq Maass cusp forms for all N > 2, satisfy a central limit theorem in a suitable range, generalizing the case N “ 2 treated by É. Fouvry, S. Ganguly, E. Kowalski and P. Michel in [4]. Such universal Gaussian behaviour relies on a deep e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2012

ISSN: 0021-2172,1565-8511

DOI: 10.1007/s11856-012-0112-2